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Synchronization in coupled map lattices as an interface depinning
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We study a solid-on-soli@SOS model whose dynamics is inspired by recent studies of the synchronization
transition in coupled map lattic6g€ML). The synchronization of CML is thus related with a depinning of
interface from a binding wall. Critical behavior of our SOS model depends on a specific form of binding
transition rates of the dynamicd=or an exponentially decaying binding the depinning belongs to the directed
percolation universality class. Other types of depinning, including the one with a line of critical points, are
observed for a power-law binding.
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Recently synchronization of chaotic systems has attractee: 1/LEiL: Jw(i,t). To relate this problem with BKPZ one ar-
a lot of interesf1]. To a large extent, this interest is moti- gues that in continuous limit and close to the synchronized
vated by numerous experimental realizations of this phenomstate, the evolution equation far(i,t) is given as a Lange-
ena including lasers, electronic circuits, or chemical reacvin equation with multiplicative Gaussian noise which then,
tions [2]. Synchronization acquires additional features inusing the Hopf-Cole transformatioh= —In(w), is trans-
spatially extended systems, where it can be regarded asfarmed into BKPZ. Let us notice that CML's are determinis-
certain nonequilibrium phase transition. There are increasingic systems and the noise has only effective meaning, mim-
efforts to understand the properties of this transition. Relaicking their chaotic behavior. The problem of a relation of
tively well understood is the synchronization transiti@) such deterministic systems with stochastic counterparts is
in certain cellular automata. Since a synchronized state cavery interesting and recently is drawing some attenfidj.
be regarded as an absorbing state for cellular automatén the above representation the desynchronized phase in
which are discrete systems, the phase transition as expecte@\ML (w(t)>0) corresponds to the interface pinned rela-
belongs to the directed percolatigBP) universality class tively close to the wall (h;)<). In the synchronized phase
[3]. However, continuous systems, as, e.g., coupled map lafw(t)— 0] the interface depins and drifts awagh()— ).
tices(CML's) [4], need infinite time to reach a synchronized Perfectly synchronized staféw(t))=0] is reached only af-
state and the relation with DP does not seem to hold. Indeeder infinitely long time. The above analysis requires the dif-
Pikovsky and Kurthg5] argued that for continuous systems ferentiability of the local map and thus is not applicable to
this transition should belong to the so-called boundediiscontinuous maps. However, numerical results show that
Kardar-Parisi-ZhengBKPZ) universality clas$6]. Recently, the relation with BKPZ breaks down also for continuous
precise numerical calculations confirmed their predictionsut sufficiently steep map®]. From a theoretical point of
but only for CML with some continuous magpg]. Surpris-  view it would be desirable to understand why such proper-
ingly, the ST for discontinuouf7,8] or continuous but suf- ties of the local map affect the nature of the ST and move
ficiently steep[9] maps were found to belong to the DP into the DP universality class. Let us notice that if the
universality class. It would be desirable to understand theoupled CML system enters the synchronized state, it will
critical behavior of the ST in CML and the present paperremain in this state forever. Such a state can thus be consid-
might be a step in this direction. ered as an absorbing state of the dynamics, although it can-

Let us briefly describe the setup which is used to studynot be reached in any finite time. Well-developed techniques
synchronization in CML7]. In the simplest one-dimensional are available to study phase transitions in models with ab-
case, one takes a single-chain CML of slzghat is com-  sorbing state§11].

posed ofL diffusively coupled local map$(u;) [4]. The It is clear that the problem of synchronization in exten-
maps are chaotic and act on continuous site variallg$  ded systems are related with a number of very interesting
=1,... L), which are typically bounded (Qu;<1). Then, problems in nonequilibrium statistical mechanics such as

one couples such a spatio-temporally chaotic system with itthe KPZ model, nonequilibrium wetting12], or directed
identical copy, which initially has a different set of site vari- percolation. Recently, some arguments were given that a
ables. It turns out that the evolution of such a coupled systemotoriously difficult particle system, the so-called pair con-
depends on the coupling strength. For weak coupling the tweact process with diffusiofPCPD model, might be also
CML's are desynchronized and essentially independentelated with these modelgl3]. Deeper understanding of
However, for sufficiently strong coupling the system getsthese problems and their mutual relations would be certainly
synchronized and approaches a state where correspondidgsirable.

pairs of site variables in both copies take the same value. To In the present paper we introduce an interfacial and
quantify synchronization one can introduce the synchronizaeliscrete (SOS model which is inspired by the dynamics
tion error w(i,t)=|uy(i,t)—uy(i,t)| where a lower index of CML with discontinuous maps. The synchronization of
denotes a copy of CML and its spatial averaggt) CML is thus related with a depinning of interface from a
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binding wall. Numerical calculations show that the univer- 0.25 =006+

sality class of the depinning transition in our model depends e, L=10000 ~

on the choice of binding, which enters the dynamics through 02| el )

certain transition rates. For an exponentially decaying

binding, the depinning belongs to the DP universality 0.15 | :g:;_ ' i

class. In this case the overall behavior of the model is very = 09t w,_.a—* ‘%&

similar to Sneppen’s model of interface propagation in a 01p 2 -1f e *,

random environment that is driven by a certain extremal =4 [ T y=0791 %

dynamics [14,15. For a power-law decaying binding, 005 5. . '

the depinning transition is characterized by a different set 3 -126510(7 :3() -1.5

of critical exponents. In the case of a rapid decay these 0 - : : S
0.7 0.72 0.74 0.76 0.78 0.8

exponents are very close to those obtained for the bosonic
version of PCPD moddll6]. In the case of a slow decay, in
the entire unbounded phase the interface remains critical, F|g. 1. The steady-state activity as a function ofy for model

that in itself is an interesting property of a nonequilibrium . The inset shows the logarithmic scaling of at criticality.

v

system. The slope of the dotted line corresponds to the DP vgi€.2765.
In our model discrete site variablés=1,2,... are de- The simulation time wasg,=10 plus 2x10* discarded for
fined on a one-dimensional lattice of sike(i=1,...L) relaxation.

with periodic boundary conditionsh(;=h4). In an el-

ementary update, we select randomly a si&d change the genoted asv (in the following we refer to this quantity as
variableh;, and possibly neighboring ones, according to theactivity). Of course in the absorbing phase=0 and in the
following rule: (i) with probability p(h;) one setshi=hi.1  active phasev>0. Upon approaching, the critical point
=hi_;=1; (i) with probability 1—p(h;) the site variablé;  typically exhibits a power-law decay~ (y—y.) # with a
increases by unity—h;+1). During a unit of timeL  characteristic exponeyd and for the critical point located at
e_Iementary updates are perform(_ed. To complete the_deflmy: v.. Moreover, we studied the time dependencevff).
tion we have to specify the functiop(h). To allow a drift e eypects that at criticality this quantity has a power-law
toward hzoo’. the functionp(h) must decay 1o zerg fon . ecayw(t)~t~®, where® is another characteristic expo-
—oo, Numerical results tha;t we present below are obtame(gem. We also used the so-called spreading technigjde
Trl)%o(mcoazjsjsl.l)pw%grg ; 0 ggg‘i ODaringor?t(rgl) _gg;n- First, we seth;=cc for all but one site ;) that was set to

' Y P unity. Then we monitored the subsequent evolution of the

eters of the model. . . : "
To make a link with synchronization in CML's, the fol- model (actually, of interest are only sites with positive

lowing remarks are in order. Numerical calculations forW(:t), i-€., with finiteh;) measuring the average activity of
CMLs with discontinuous maps show that the Lyapunov ex-the systemw(t), the survival probability(t), and 2the av-
ponent that governs the evolution of the synchronization eréraged spread SQ_U_a@Z(t):UVV(t)EiW(I,t)(l—lo) . One
ror w(i,t) is negative in the vicinity of the transitiofy]. ~ exPects that at criticalityw(t)~t”, P(t)~t~°, and R*(t)
Approximately, the evolution ofv(i,t) is thus made of con- ~1%, which at the same time defines the critical exponents
secutive contractionpw(i,t)—cw(i,t) andc<1] that, due 6, andz.

to discontinuity of the map, are from time to time interrupted ~ First, let us describe the results obtained for model |
by discontinuous changes that might substantially increase

the value ofw(i,t). To notice a link between the dynamics 04 — 12

of synchronization error in CML and our model we introduce 06 -

new variablesv;=e " (let us notice a similarity to the in- % o8l % 08

verse Hopf-Cole transformatipnindeed, the increase o :% '1 | E 0.4

by unity according to the ruléi) decreaseswv; by a factore = 7 = .l

that corresponds to the contractionwefi,t). The first rule 12 ¢

mimics the discontinuous jumps of(i,t). Since local maps -1-40 1 2 3 . s -0-40 1 2 3 "1
in CML's are coupled, a jump at a sitealso affects its

neighbors. log10(®) log10(®

Monte Carlo simulations of our model are similar to those
of other models with absorbing statigdsl]. For some details

related to the faqt that the model needs an infinite time tocmd 0.794Model I). The results are averaged over 100 independent
reach an absorbing state see, e.g., Ref. We observed runs and simulations were done far=5x10% (b) The time-

that for sufficiently largey the interface depins from the gependent activityv(t) as a function of timé calculated using the
h=1 wall and drifts away. For smalley the model remains  gpreading method foffrom top y=0.787, 0.789, 0.791critical

in the active phase with the interface rE|atiVEIy close to th%oint), 0.793, and 0.79%Model ). The results are averaged over
wall. To examine the nature of the phase transition, we in410° independent runs. The slope of the dotted line corresponds to
troducedw(t)=(1/L=}_,w(i,t)) that in the steady state is the DP valuey=0.3137

FIG. 2. (a) The time-dependent activitw(t) as a function of
time t for (from top y=0.788, 0.790, 0.791critical poiny, 0.792,
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S 80x10° [ 0.0x10° :
% ox10® s5x10* 1x10°
6.0x10° | ¢
log () log 1o(t)
40x10° |
20x10° 1 FIG. 5. (a) The time-dependent activitw(t) as a function of
ol l [ l m time t for (from top y=1.746, 1.748, 1.7492%critical poing,
0.0x10 il ububaly _
0x10° 2%10° 4x103 6x10° 8x10° 1.750, and 1.752ZModel 1I, a=1). The results are averaged over

100 independent runs and simulations were donelfer5x 10,
(b) The time-dependent activityv(t) as a function of timet
FIG. 3. The interface profile for model | at criticalityye y, ~ calculated using the spreading method fom top) y=1.7488,

=0.791) aftert=10" Monte Carlo steps. The inset shows that the 1-749: 1.7492, 1.7492%critical point, 1.7493, 1.7494, 1.7496,
interface widthw(t) grows linearly in time. and 1.75Model Il, a=1). The results are averaged over liftde-
pendent runs.

1

[p(h)=e "]. From the steady-state measurementswof
(Fig. 1), we estimatey,=0.791(1) and8=0.281). Such a  error. Our preliminary calculations for CML model examined
location of the critical point is confirmed from time- Dy Ahlers and Pikovsky7] show that large fluctuations,
dependent simulation#ig. 2@)] and the spreading method similar to those in model | are clearly seen. However, to
[Fig. 2(b)]. From these data we estima®=0.1602), quantify these fluctuations and calculate, e.g., the width
7=0.3175), 5=0.161), and z=1.261). The results for ~W(t), simulations on a longer time scale are required. Since
P(t) andR?(t) are not presented. Obtained values of criticalfor CML, dynamics is defined in terms of's rather tharh’s,
exponents clearly show that model | belongs to the DP unisimulations for longer time, which must probe states of ex-
versality class for whicH11] 8=0.2765, =0.3137,0=4 tremely small synchronization error, severely suffer from the
=0.1595, andz=1.265. finite accuracy of numerical computations. On the other hand
To have a more complete insight into the critical behaviorour SOS model easily allows us to examine such a long-time
of our model we calculate the average interfacial widthf€9Ime. _
W(t)=((Ei_4[h(i,t) = (h(i,)))))*) M At criticality this It is already known that some SOS-like models belong to
quantity typically behaves aW(t)~tB' where g is the the DP umversallty.class. In parUcuIar, Alm al.[18] intro-
growth exponent. For model | simuiations show almostd.uced a model of interface roughemng with e(_jge cvapora-
linear increase oW(t) with time (inset in Fig. 3 and we tion. In this model the growth of the interface width is loga-

estimate8'=1.0(1). Such a value of the growth exponent rithmic in time and is thus much different from that of our
- T : grow PO model. As far as the critical behavior is concerned, our
indicates very strong fluctuations, which is confirmed

through a visual inspection of the interface profiiég. 3. In model seems to be more closely related with the Sneppen’s
principle, from direct calculations for CML's we can obtain

an interface profile as a logarithm of the synchronization ! R
- 27 +
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0 log 10(IYC'Y) ) ) k' log (V)
1.725 173 1735 1.74 1.745 175
¥ FIG. 6. The time-dependent activity(t) as a function of time

for (from top a=0.11, 0.09, 0.07critical poiny, 0.05, and 0.04
FIG. 4. The steady-state activity as a function ofy for model (Model Il, y=1). The results are averaged over 200 independent
Il for a=1. The inset shows the logarithmic scaling wf at runs and simulations were done far=5x10* Inset shows the

criticality. The slope of the dotted line corresponds 2e-0.36. logarithmic scaling of the steady-state activityas a function of
The simulation time wasg,,=10° plus 2x10* discarded for a—a, with a,=0.07 calculated forL=2x10%+) and L=5
relaxation. X 10%(x) (Model II, y=1).
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model of interface spreading in environment with quenchedange ofy the depinning transition belongs to the same uni-
disorder[14]. His model is driven by extremal dynamics versality class. However, a different behavior was observed
and has the growth exponem close to unity. Later it for y=1. Indeed, in this case our simulations suggEsi. 6)
was established that this model is actually equivalent to théhat the depinning transition is characterized by the expo-
DP model sitting exactly at the critical poifit5]. Impor-  nentsg~3.0(3) and®=0.625). What is also interesting, the
tant ingredients of Sneppen’s model are quenched disord@itire unbounded phase<a.~0.07 seems to be critical
and extremal dynamics. The fact that our model, whichyith a power-law decaying order parametert~*, where

misses these features, exhibits essentially the same behav;pj; 0.80(5), andx might slightly vary witha. Such a behav-
is in our opinion quite interesting and worth further exami- ior is also \,/vorth further studies.

natlor_L . One of the future problems would be to check whether
US'Eg the same procedure we_stughed the mo.del IIthere are some other types of critical behavior for this kind of
(P(h)=a(h+1)™7). First we kepta=1 fixed and varied . . . )

. SOS model. Clearly, an important ingredient that determines
only the parametery. Some of our numerical results are the critical behavior is the form of the functiop(h). It
shown in Figs. 4 and 5. Using these data we estimate ; . op(h).
~1.7492%5), B=0.361), ©=0.1853), 7=-0.031), woulzd be interesting to explore some other functi¢es.,
5=0.4455), and z=1.191). All exponents considerably € *" or[In(h)]~?) for a possibly new behavior. Although
differ from DP exponents. To support these estimations, lewe were not able to recover the BKPZ universality class
us notice that the hyperscaling relatiai2 =0+ 6+ » is  Wwithin our approach, there is still a possibility that for a
satisfied by the above values. It is rather surprising for us teertain choice ofp(h) such a behavior might appear. It
observe that our values of exponeptdd, andzare in avery would be also interesting to check whether a new critical
good agreement with recent estimation for the so-calledehavior found in model Il has a counterpart in a synchroni-
bosonic version of a pair contact process with diffugib@l. zation transition in CML.

It would be interesting to examine whether this is only a Note added in proofRecently, another stochastic model
numerical coincidence or if there is a deeper relation bewith dynamics inspired by the synchronization phenomenon

tween these two problems. . . was examined by Ginelkt al.[19].
We also studied model Il for fixeds and varying the . . . )
amplitudea. Monte Carlo simulations show that for=2 the This work was partially supported by the Swiss National

critical behavior of the model seems to be the same as fopcience Foundation and the Project No. OFES 00-0578
y=1v.=1.74925 anda=1. It suggests that for a certain “COSYC OF SENS.”
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