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Synchronization in coupled map lattices as an interface depinning
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We study a solid-on-solid~SOS! model whose dynamics is inspired by recent studies of the synchronization
transition in coupled map lattices~CML!. The synchronization of CML is thus related with a depinning of
interface from a binding wall. Critical behavior of our SOS model depends on a specific form of binding~i.e.,
transition rates of the dynamics!. For an exponentially decaying binding the depinning belongs to the directed
percolation universality class. Other types of depinning, including the one with a line of critical points, are
observed for a power-law binding.
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Recently synchronization of chaotic systems has attra
a lot of interest@1#. To a large extent, this interest is mot
vated by numerous experimental realizations of this phen
ena including lasers, electronic circuits, or chemical re
tions @2#. Synchronization acquires additional features
spatially extended systems, where it can be regarded
certain nonequilibrium phase transition. There are increas
efforts to understand the properties of this transition. Re
tively well understood is the synchronization transition~ST!
in certain cellular automata. Since a synchronized state
be regarded as an absorbing state for cellular autom
which are discrete systems, the phase transition as expe
belongs to the directed percolation~DP! universality class
@3#. However, continuous systems, as, e.g., coupled map
tices~CML’s! @4#, need infinite time to reach a synchronize
state and the relation with DP does not seem to hold. Ind
Pikovsky and Kurths@5# argued that for continuous system
this transition should belong to the so-called bound
Kardar-Parisi-Zheng~BKPZ! universality class@6#. Recently,
precise numerical calculations confirmed their predictio
but only for CML with some continuous maps@7#. Surpris-
ingly, the ST for discontinuous@7,8# or continuous but suf-
ficiently steep@9# maps were found to belong to the D
universality class. It would be desirable to understand
critical behavior of the ST in CML and the present pap
might be a step in this direction.

Let us briefly describe the setup which is used to stu
synchronization in CML@7#. In the simplest one-dimensiona
case, one takes a single-chain CML of sizeL that is com-
posed ofL diffusively coupled local mapsf (ui) @4#. The
maps are chaotic and act on continuous site variablesui ( i
51, . . . ,L), which are typically bounded (0,ui,1). Then,
one couples such a spatio-temporally chaotic system with
identical copy, which initially has a different set of site va
ables. It turns out that the evolution of such a coupled sys
depends on the coupling strength. For weak coupling the
CML’s are desynchronized and essentially independ
However, for sufficiently strong coupling the system ge
synchronized and approaches a state where correspon
pairs of site variables in both copies take the same value
quantify synchronization one can introduce the synchron
tion error w( i ,t)5uu1( i ,t)2u2( i ,t)u where a lower index
denotes a copy of CML and its spatial averagew(t)
1063-651X/2003/68~5!/056119~4!/$20.00 68 0561
d

-
-

a
g
-

an
ta,
ed,

t-

d,

d

s

e
r

y

ts

m
o
t.

s
ing
o
-

51/L( i 51
L w( i ,t). To relate this problem with BKPZ one ar

gues that in continuous limit and close to the synchroniz
state, the evolution equation forw( i ,t) is given as a Lange-
vin equation with multiplicative Gaussian noise which the
using the Hopf-Cole transformationh52 ln(w), is trans-
formed into BKPZ. Let us notice that CML’s are determini
tic systems and the noise has only effective meaning, m
icking their chaotic behavior. The problem of a relation
such deterministic systems with stochastic counterpart
very interesting and recently is drawing some attention@10#.
In the above representation the desynchronized phas
CML (w(t).0) corresponds to the interface pinned re
tively close to the wall (̂hi&,`). In the synchronized phas
@w(t)→0# the interface depins and drifts away (^hi&→`).
Perfectly synchronized state@^w(t)&50# is reached only af-
ter infinitely long time. The above analysis requires the d
ferentiability of the local map and thus is not applicable
discontinuous maps. However, numerical results show
the relation with BKPZ breaks down also for continuo
but sufficiently steep maps@9#. From a theoretical point of
view it would be desirable to understand why such prop
ties of the local map affect the nature of the ST and mo
into the DP universality class. Let us notice that if th
coupled CML system enters the synchronized state, it w
remain in this state forever. Such a state can thus be con
ered as an absorbing state of the dynamics, although it
not be reached in any finite time. Well-developed techniq
are available to study phase transitions in models with
sorbing states@11#.

It is clear that the problem of synchronization in exte
ded systems are related with a number of very interes
problems in nonequilibrium statistical mechanics such
the KPZ model, nonequilibrium wetting@12#, or directed
percolation. Recently, some arguments were given tha
notoriously difficult particle system, the so-called pair co
tact process with diffusion~PCPD! model, might be also
related with these models@13#. Deeper understanding o
these problems and their mutual relations would be certa
desirable.

In the present paper we introduce an interfacial a
discrete ~SOS! model which is inspired by the dynamic
of CML with discontinuous maps. The synchronization
CML is thus related with a depinning of interface from
©2003 The American Physical Society19-1
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binding wall. Numerical calculations show that the unive
sality class of the depinning transition in our model depe
on the choice of binding, which enters the dynamics throu
certain transition rates. For an exponentially decay
binding, the depinning belongs to the DP universal
class. In this case the overall behavior of the model is v
similar to Sneppen’s model of interface propagation in
random environment that is driven by a certain extrem
dynamics @14,15#. For a power-law decaying binding
the depinning transition is characterized by a different
of critical exponents. In the case of a rapid decay th
exponents are very close to those obtained for the bos
version of PCPD model@16#. In the case of a slow decay, i
the entire unbounded phase the interface remains crit
that in itself is an interesting property of a nonequilibriu
system.

In our model discrete site variableshi51,2, . . . are de-
fined on a one-dimensional lattice of sizeL ( i 51, . . . ,L)
with periodic boundary conditions (hL115h1). In an el-
ementary update, we select randomly a sitei and change the
variablehi , and possibly neighboring ones, according to
following rule: ~i! with probability p(hi) one setshi5hi 11

5hi 2151; ~ii ! with probability 12p(hi) the site variablehi
increases by unity (hi→hi11). During a unit of timeL
elementary updates are performed. To complete the de
tion we have to specify the functionp(h). To allow a drift
toward h5`, the functionp(h) must decay to zero forh
→`. Numerical results that we present below are obtain
for two cases: p(h)5e2gh ~model I! and p(h)5a(h
11)2g ~model II!, whereg.0 anda.0 are control param-
eters of the model.

To make a link with synchronization in CML’s, the fol
lowing remarks are in order. Numerical calculations f
CML’s with discontinuous maps show that the Lyapunov e
ponent that governs the evolution of the synchronization
ror w( i ,t) is negative in the vicinity of the transition@7#.
Approximately, the evolution ofw( i ,t) is thus made of con-
secutive contractions@w( i ,t)→cw( i ,t) andc,1] that, due
to discontinuity of the map, are from time to time interrupt
by discontinuous changes that might substantially incre
the value ofw( i ,t). To notice a link between the dynamic
of synchronization error in CML and our model we introdu
new variableswi5e2hi ~let us notice a similarity to the in
verse Hopf-Cole transformation!. Indeed, the increase ofhi
by unity according to the rule~ii ! decreaseswi by a factore
that corresponds to the contraction ofw( i ,t). The first rule
mimics the discontinuous jumps ofw( i ,t). Since local maps
in CML’s are coupled, a jump at a sitei also affects its
neighbors.

Monte Carlo simulations of our model are similar to tho
of other models with absorbing states@11#. For some details
related to the fact that the model needs an infinite time
reach an absorbing state see, e.g., Ref.@9#. We observed
that for sufficiently largeg the interface depins from th
h51 wall and drifts away. For smallerg the model remains
in the active phase with the interface relatively close to
wall. To examine the nature of the phase transition, we
troducedw(t)5^1/L( i 51

L w( i ,t)& that in the steady state i
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denoted asw ~in the following we refer to this quantity a
activity!. Of course in the absorbing phasew50 and in the
active phasew.0. Upon approaching, the critical pointw
typically exhibits a power-law decayw;(g2gc)

2b with a
characteristic exponentb and for the critical point located a
g5gc . Moreover, we studied the time dependence ofw(t).
One expects that at criticality this quantity has a power-l
decayw(t);t2Q, whereQ is another characteristic expo
nent. We also used the so-called spreading technique@17#.
First, we sethi5` for all but one site (i 0) that was set to
unity. Then we monitored the subsequent evolution of
model ~actually, of interest are only sites with positiv
w( i ,t), i.e., with finitehi) measuring the average activity o
the systemw(t), the survival probabilityP(t), and the av-
eraged spread squareR2(t)51/w(t)( iw( i ,t)( i 2 i 0)2. One
expects that at criticality:w(t);th, P(t);t2d, and R2(t)
;tz, which at the same time defines the critical exponentsh,
d, andz.

First, let us describe the results obtained for mode

FIG. 1. The steady-state activityw as a function ofg for model
I. The inset shows the logarithmic scaling ofw at criticality.
The slope of the dotted line corresponds to the DP valueb50.2765.
The simulation time wastsim5105 plus 23104 discarded for
relaxation.

FIG. 2. ~a! The time-dependent activityw(t) as a function of
time t for ~from top! g50.788, 0.790, 0.791~critical point!, 0.792,
and 0.794~Model I!. The results are averaged over 100 independ
runs and simulations were done forL553104. ~b! The time-
dependent activityw(t) as a function of timet calculated using the
spreading method for~from top! g50.787, 0.789, 0.791~critical
point!, 0.793, and 0.795~Model I!. The results are averaged ove
105 independent runs. The slope of the dotted line correspond
the DP valueh50.3137
9-2
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@p(h)5e2gh#. From the steady-state measurements ofw
~Fig. 1!, we estimategc50.791(1) andb50.28~1!. Such a
location of the critical point is confirmed from time
dependent simulations@Fig. 2~a!# and the spreading metho
@Fig. 2~b!#. From these data we estimateQ50.160~2!,
h50.317~5!, d50.16~1!, and z51.26(1). The results for
P(t) andR2(t) are not presented. Obtained values of critic
exponents clearly show that model I belongs to the DP u
versality class for which@11# b50.2765,h50.3137,Q5d
50.1595, andz51.265.

To have a more complete insight into the critical behav
of our model we calculate the average interfacial wid
W(t)5^„( i 51

L @h( i ,t)2^h( i ,t)&)…2&1/2. At criticality this

quantity typically behaves asW(t);tb8, where b8 is the
growth exponent. For model I simulations show almo
linear increase ofW(t) with time ~inset in Fig. 3! and we
estimateb851.0~1!. Such a value of the growth expone
indicates very strong fluctuations, which is confirm
through a visual inspection of the interface profile~Fig. 3!. In
principle, from direct calculations for CML’s we can obta
an interface profile as a logarithm of the synchronizat

FIG. 3. The interface profile for model I at criticality (g5gc

50.791) aftert5104 Monte Carlo steps. The inset shows that t
interface widthW(t) grows linearly in time.

FIG. 4. The steady-state activityw as a function ofg for model
II for a51. The inset shows the logarithmic scaling ofw at
criticality. The slope of the dotted line corresponds tob50.36.
The simulation time wastsim5105 plus 23104 discarded for
relaxation.
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error. Our preliminary calculations for CML model examine
by Ahlers and Pikovsky@7# show that large fluctuations
similar to those in model I are clearly seen. However,
quantify these fluctuations and calculate, e.g., the wi
W(t), simulations on a longer time scale are required. Si
for CML, dynamics is defined in terms ofw’s rather thanh’s,
simulations for longer time, which must probe states of e
tremely small synchronization error, severely suffer from t
finite accuracy of numerical computations. On the other ha
our SOS model easily allows us to examine such a long-t
regime.

It is already known that some SOS-like models belong
the DP universality class. In particular, Alonet al. @18# intro-
duced a model of interface roughening with edge evapo
tion. In this model the growth of the interface width is log
rithmic in time and is thus much different from that of ou
model. As far as the critical behavior is concerned, o
model seems to be more closely related with the Snepp

FIG. 5. ~a! The time-dependent activityw(t) as a function of
time t for ~from top! g51.746, 1.748, 1.74925~critical point!,
1.750, and 1.752~Model II, a51). The results are averaged ov
100 independent runs and simulations were done forL553104.
~b! The time-dependent activityw(t) as a function of timet
calculated using the spreading method for~from top! g51.7488,
1.749, 1.7492, 1.74925~critical point!, 1.7493, 1.7494, 1.7496
and 1.75~Model II, a51). The results are averaged over 105 inde-
pendent runs.

FIG. 6. The time-dependent activityw(t) as a function of timet
for ~from top! a50.11, 0.09, 0.07~critical point!, 0.05, and 0.04
~Model II, g51!. The results are averaged over 200 independ
runs and simulations were done forL553104. Inset shows the
logarithmic scaling of the steady-state activityw as a function of
a2ac with ac50.07 calculated forL523104(1) and L55
3104(3) ~Model II, g51!.
9-3
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model of interface spreading in environment with quench
disorder @14#. His model is driven by extremal dynamic
and has the growth exponentb8 close to unity. Later it
was established that this model is actually equivalent to
DP model sitting exactly at the critical point@15#. Impor-
tant ingredients of Sneppen’s model are quenched diso
and extremal dynamics. The fact that our model, wh
misses these features, exhibits essentially the same beh
is in our opinion quite interesting and worth further exam
nation.

Using the same procedure we studied the mode
(P(h)5a(h11)2g). First we kepta51 fixed and varied
only the parameterg. Some of our numerical results ar
shown in Figs. 4 and 5. Using these data we estimategc
51.74925(5), b50.36~1!, Q50.185~3!, h520.03~1!,
d50.445~5!, and z51.19(1). All exponents considerabl
differ from DP exponents. To support these estimations,
us notice that the hyperscaling relationz/2 5Q1d1h is
satisfied by the above values. It is rather surprising for u
observe that our values of exponentsb, Q, andz are in a very
good agreement with recent estimation for the so-ca
bosonic version of a pair contact process with diffusion@16#.
It would be interesting to examine whether this is only
numerical coincidence or if there is a deeper relation
tween these two problems.

We also studied model II for fixedg and varying the
amplitudea. Monte Carlo simulations show that forg52 the
critical behavior of the model seems to be the same as
g5gc51.74925 anda51. It suggests that for a certai
,
ce

.S
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range ofg the depinning transition belongs to the same u
versality class. However, a different behavior was obser
for g51. Indeed, in this case our simulations suggest~Fig. 6!
that the depinning transition is characterized by the ex
nentsb;3.0~3! andQ50.62~5!. What is also interesting, the
entire unbounded phasea,ac;0.07 seems to be critica
with a power-law decaying order parameterw;t2x, where
x;0.80(5), andx might slightly vary witha. Such a behav-
ior is also worth further studies.

One of the future problems would be to check wheth
there are some other types of critical behavior for this kind
SOS model. Clearly, an important ingredient that determi
the critical behavior is the form of the functionp(h). It
would be interesting to explore some other functions~e.g.,

e2gh2
or @ ln(h)#2g) for a possibly new behavior. Although

we were not able to recover the BKPZ universality cla
within our approach, there is still a possibility that for
certain choice ofp(h) such a behavior might appear.
would be also interesting to check whether a new criti
behavior found in model II has a counterpart in a synchro
zation transition in CML.

Note added in proof. Recently, another stochastic mod
with dynamics inspired by the synchronization phenomen
was examined by Ginelliet al. @19#.
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